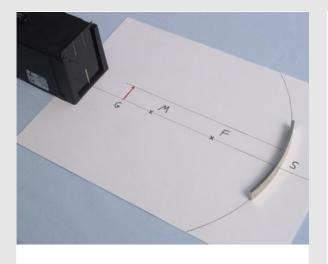

Image construction for a concave mirror

Physics	Light & Optics	Reflection & refraction of light	
Difficulty level	QQ Group size	D Preparation time	Execution time
easy	2	10 minutes	10 minutes
This content can also be found online at:			

http://localhost:1337/c/631b118abce9830003710de4



Teacher information

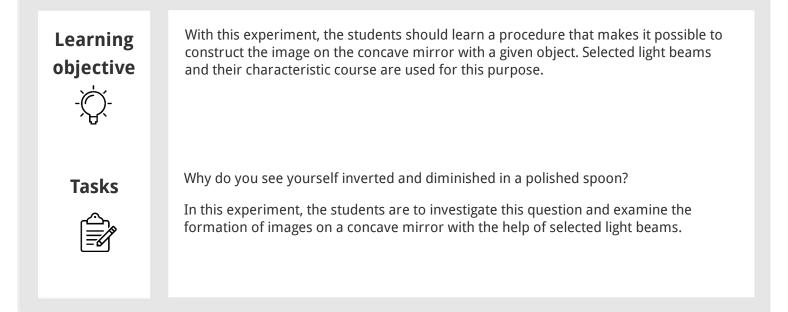
Application

PHYWE

Reflection at the concave mirror

A concave mirror is a mirror that is curved concavely (inwards).

For example, a concave mirror, which concentrates the light rays in its focal point, is used to harness solar energy.


Pierre Borell, a French physician, first used a concave mirror for medical examination in the 17th century. Slightly modified, they are still used today in medical diagnostics in the form of a forehead mirror,

Other teacher information (1/6) PHYWE					
Prior knowledge	The students should have previously learned the basics of the straight-line propagation of light and the application of the law of reflection. In addition, before carrying out the experiment, it should be explained why objects in our environment can be seen at all and how to construct pixels with the help of main rays.				
Principle	Light beams incident on a concave mirror along the optical axis are light beams through the centre of curvature and are therefore reflected into themselves. The "foot points" of the objects "standing" on the optical axis are again imaged on the optical axis. Therefore, only one more image point is sufficient for a clear construction of the image.				

Other teacher information (2/6)

PHYWE

Other teacher information (3/6)

PHYWE

Additional information 1

With this experiment, the student should learn a procedure with the help of which the construction of the image on the concave mirror is possible with a given object. Selected light beams and their characteristic course are used for this purpose.

The experiment is demanding in terms of the students' abilities and experimental skills. However, with careful adjustment and precise experimental work, the experiment is associated with a very high gain in knowledge for the student, especially if corresponding demonstration experiments are carried out with the optical bench as a supplement.

Other teacher information (4/6)

PHYWE

Additional information 2

With this experiment, the essence of the physical experiment can be clearly demonstrated; through the specific specification of the experimental conditions (object width, object size, focal length), one obtains a result with new information content.

By varying the conditions, physical laws can be deduced, but the reverse, deductive path is also possible. The construction of the images with the help of selected light rays and the subsequent experimental verification offer a wide range of possibilities for an interesting lesson design.

The experiment uses an example (geometric constructions) to illustrate the role of mathematics in physical knowledge.

www.phywe.de

Other teacher information (5/6)

PHYWE

Note

Before carrying out the experiment, explain to the students that objects in our environment are only seen because the light from a light source (e.g. the sun) is reflected by them and enters the eye. It is similar with the formation of an image at the concave mirror. A real image can only ever be created when the light beams emanating from an object point reunite in a point after reflection.

To construct these image points, it is therefore sufficient to select two of the infinite number of light beams and to follow their path from the object point to the image point. For the sake of simplicity, one selects individual light beams ("main beams") and a third light beam serves as a control.

Other teacher information (6/6)

PHYWE

Notes on set-up and procedure

In this experiment, special attention should be paid to the exact position of the light box (e.g. parallel to the optical axis) in the individual experimental steps.

It is therefore advisable to draw a thin auxiliary line beforehand, e.g. parallel to the optical axis. Under these conditions, a high reproducibility of the results can be expected.

PHYWE

Safety instructions

The general instructions for safe experimentation in science lessons apply to this experiment.

PHYWE

Student information

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Motivation

PHYWE

We encounter mirrors every day in a wide variety of designs. A special type of mirror is the so-called concave mirror. This is a mirror that is curved inwards and concentrates the reflected rays in one point, the focal point.

A typical example of a concave mirror is a spoon, as shown in the picture on the right. Have you ever looked at your reflection in a spoon, do you notice anything special about it?

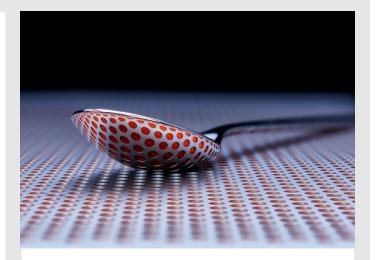
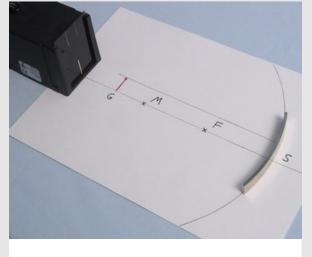



Image of a spoon on a patterned base

Task

PHYWE

diminished in a polished spoon?

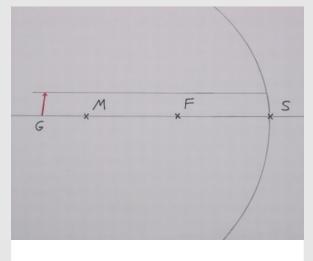
Why do you see yourself inverted and

Investigate the formation of images on a concave mirror with the help of selected light beams.

Experimental setup

Equipment

Position	Material	Item No.	Quantity
1	Light box, halogen 12V/20 W	09801-00	1
2	Mirror, concave-convex	09812-00	1
3	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1


PHYWE

Additional equipment

Pos	ition Material	Quantity
1	Ruler (approx. 30cm)	1
2	White paper (DIN A4)	1
3	Circle	1

Set-up

PHYWE

Preparation of the DIN-A4 sheet

Attention!

Make sure that the concave mirror always rests in the middle of the inner curvature on *S*.

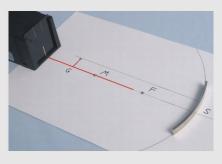
- Prepare a sheet of paper as shown on the left. The distances \overline{FS} and \overline{MS} are 7.2 cm each, the arc of the circle around M has the radius \overline{MS} .
- At a distance of 18 cm from the point *S*, draw a vertical arrow 2 cm long on the optical axis with a red pencil and label it with *G* (Subject).
- $\circ~$ Draw a thin pencil line exactly parallel to the optical axis as an auxiliary line passing through the tip of the object arrow G.

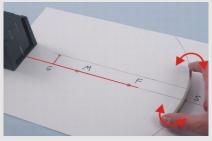
PHYWE

PHYWE

Procedure (1/6)

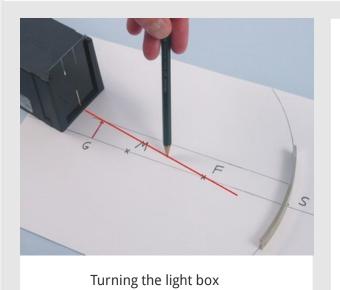
- Insert the slit diaphragm into the light box on the lens side. Place the light box and the concave mirror on the sheet of paper.
- Connect the light box to the power supply unit (12 V ~).
- Check the correct position of the concave mirror by first letting the narrow beam of light fall along the optical axis.


Procedure (2/6)


G AM F S

Moving the light box

- Now move the light box until the narrow light beam runs exactly parallel to the optical axis along the auxiliary line and through the tips of the arrow (imaginary object).
- Observe the light beam reflected by the concave mirror and mark the course of the incident and reflected light beam with two crosses. Write down your observations.

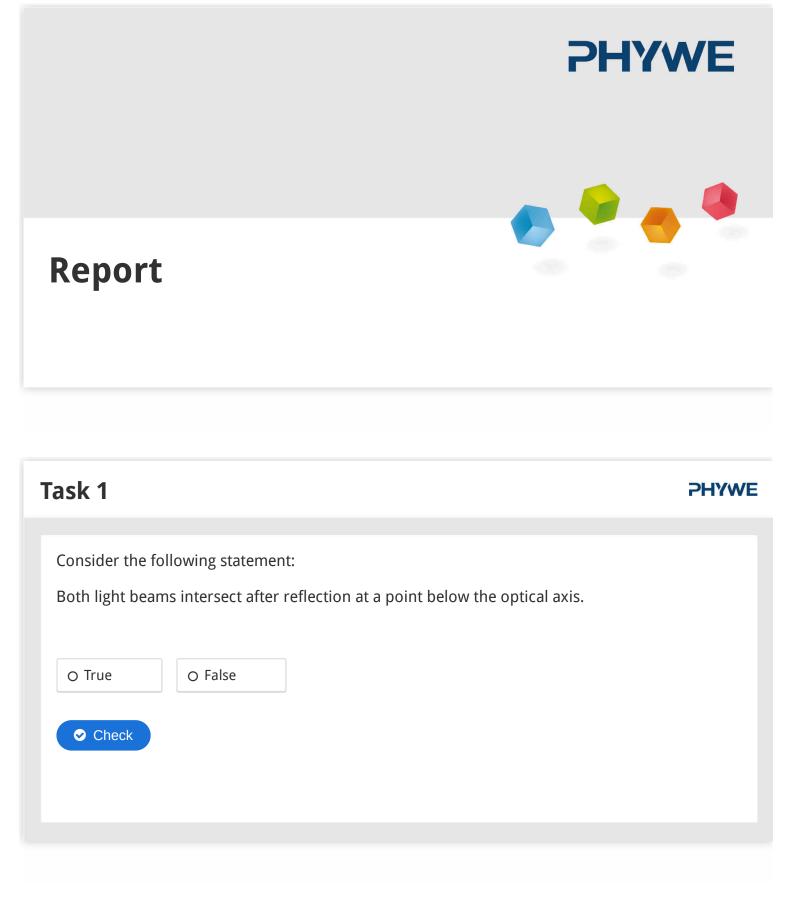


Procedure (3/6)

PHYWE

- Then turn the light box until the light beam passes through the arrowhead of *G* and the point *F* (focal point).
- Again observe the light beam reflected by the concave mirror and mark the course of the incident and reflected light beam twice (use a different colour or marker). Write down your observations.

Procedure (3/6)


PHYWE

Picture of the power supply unit

- Switch off the power supply and remove the light box and the concave mirror from the paper.
- Connect the related markings so that the course of the light beams before and after reflection at the concave mirror becomes clear.
- How do the two reflected light beams relate to each other? Write down your observations.

Task 2			PHYWE
Why do you see yourself inv	erted and diminished in a	polished spoon?	
A polished spoon is a small	. The	and the	observer
laws governing the	of selected light be	ams thus apply to it.	concave mirror
Since the	is outside the	focal length, the	double
result is a	, inverted image.	reduced	
			course
			law of reflection
Check			

Task 2			PHYWE
Why do you see yourself	inverted and diminished ir	n a polished spoon?	
A polished spoon is a small	. The	and the	observer
laws governing the	of selected light	t beams thus apply to it.	concave mirror
Since the	is outside the	focal length, the	double
result is a	, inverted image.		reduced
			course
			law of reflection
Check			

Task 3

PHYWE

Draw a straight line from the tip of the object arrow G through the point M to the mirror (centre beam).

What do you see?

The	also passes th	nrough the	ough the of the			centre ray
other two selected rays and thus through the of the image			mage	the tip		
arrow. A light beam that falls through the			onto the concave		centre of curvature M	
mirror is reflected (angle of incidence			intersection			
= = 0°). If it touches the tip of the object on its way or is			in itself			
emitted by it, it must also touch		of the image, since		all		
light beams emitted from a point on the object contribute to						
the formation of the image.			angle of reflection			
						tin

Task 4

PHYWE

Why is it sufficient to draw two excellent rays of light from objects "standing" on the optical axis, only from the tip of the object, in order to construct the image?

Light beams incident l��ngs of the optical axis on a concave mirror are light beams through the centre of curvature and are therefore reflected parallel displaced. The "foot points" of the objects "standing" on the optical axis become the arrowheads and vice versa. Therefore, only one more image point is sufficient for a clear construction of the image.

Light beams incident on a concave mirror along the optical axis are light beams through the centre of curvature and are therefore reflected into themselves. The "foot points" of the objects "standing" on the optical axis are again imaged on the optical axis. Therefore, only one more image point is sufficient for a clear construction of the image.

Additional task

PHYWE

The lens grinder equation applies to the image formation at the concave mirror:

$$rac{1}{f}=rac{b}{g}+rac{1}{g}$$
 ,

where $f=7,2\,\mathrm{cm}$ = focal length, b = image width = distance BS, g = object width = distance GS .

Check your measurement results in table 1 with this equation.

