Total reflection and the critical angle

Physics	Light & Optics			
Difficulty level	QQ Group size	C Preparation time	Execution time	
medium	2	10 minutes	10 minutes	
This content can also be found online at:				

http://localhost:1337/c/631b11d0bce9830003710df4

Teacher information

Application

PHYWE

Refraction at the transition from glass to air

In optics, the phenomenon of total internal reflection is when a light beam is completely reflected at the interface of two media and there is no transmission. This type of reflection only occurs at a certain angle, the so-called critical angle.

Total internal reflection can be observed particularly well in the transition between a transparent medium such as water or glass and air.

One application of this is, for example, optical fibres in the form of glass fibre cables. These can transport information almost loss-free up to 20,000 metres.

Other teacher information (2/4)

PHYWE

PHYWE

PHYWE

Other teacher information (3/4)

Note

The student's attention can be drawn to the dispersion of refracted light observable at angles of incidence close to the critical angle.

Other teacher information (4/4)

Notes on set-up and procedure

The success of the experiment and, in particular, the exact determination of the critical angle depend decisively on a careful adjustment of the experimental setup (0° method) and an exact incidence of the light in the direction of the plumb bob. The model body should lie on the optical disc with the roughened side facing downwards so that the light path inside the body is visible.

If necessary, the teacher should provide assistance in finding the critical angle, as experience has shown that students are very quick to let the light fall beyond the critical angle.

Another possible aid is the use of a small, white piece of paper which is held perpendicular to the optical disc in the beam path of the refracted light beam and on which this creates a light spot.

PHYWE

Safety instructions

The general instructions for safe experimentation in science lessons apply to this experiment.

PHYWE

Motivation

PHYWE

A special form of reflection is the so-called total reflection. It occurs when light hits a boundary surface at a certain angle, the critical angle. Almost all of the light is reflected and no light enters the medium.

This phenomenon takes place in optical fibres or fibre optic cables, for example. With the help of this, information can be transported up to 20,000 m almost loss-free.

Total reflection in light guides

Task

PHYWE

Experimental setup

What is meant by total internal reflection?

Investigate the behaviour of narrow beams of light when light passes from glass into air when the angle of incidence is greater than 40°.

Equipment

Position	Material	Item No.	Quantity
1	Light box, halogen 12V/20 W	09801-00	1
2	Block, semicircular	09810-01	1
3	Optical disk	09811-00	1
4	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1

www.phywe.de

Set-up

PHYWE

PHYWE

Attention!

Make sure that the narrow beam of light coming from the light box always runs exactly in the direction of the centre of the optical disc (to the plumb bob point) and that the model body does not change its position when the light box is moved.

 Place the optical disc in front of you on the table and place the semi-circular model body (with the roughened surface facing downwards) within the marks on the vertical line.

Experimental setup

Procedure (1/5)

- Place the light box with the slit diaphragm on the lens side opposite the model body. The semicircular side of the model body and the light box face each other.
- Connect the light box to the power supply unit (12 V ~).

Commissioning the power supply unit

Procedure (2/5)

PHYWE

Adjusting the beam path

- Adjust your experimental set-up so that a narrow beam of light incident along the optical axis continues along the optical axis after passing through the glass.
- Now move the light box until the light falls on the model body at an angle of 35°.
- Observe the behaviour of the narrow beam of light after it has passed through the model body when it hits the glass-air interface. Write down your observations.
- $\circ~$ Measure the angle of refraction β and note the measured value as well.

Procedure (3/5)

PHYWE

Turning the light box

- Now move the light box until the incident light beam encloses the angle of 40° with the incidence slot.
- Observe the behaviour of the narrow beam of light when it hits the interface between glass and air (especially the area inside the model body). Write down your observations.
- $\circ~$ Measure the corresponding angle of refraction β and note the measured value.

Procedure (4/5)

PHYWE

Moving the light box

- Increase the angle of incidence by carefully moving the light box and observe the course of the refracted light beam and the area inside the model body. Make a note of your observations.
- Measure the angle of incidence α and the angle of reflection exactly when the angle of refraction is just β = 90°. Write down your observations and your measurements.

Procedure (5/5)

PHYWE

Moving the light box

- Now move the light box until the incident light beam makes an angle of 50° with the incident slot. Observe and note your results.
- In this case, measure the angle between the reflected light beam and the incidence slot and note the measured value again.
- $\circ~$ Switch off the power supply unit.

PHYWE

Report

Task 1

PHYWE

Using your observations and measurements, describe how narrow beams of light behave when they strike a glass/air interface when the angle of incidence is $\alpha < 42^{\circ}$.

The incident light beam is completely reflected at the interface between glass and air and continues in the model body. Total reflection occurs.

The incident light beam completely penetrates the glass-to-air interface and is refracted away from the perpendicular.

The incident light beam is split at the interface between glass and air. Part of the light passes through the interface and is refracted away from the perpendicular. The other part is reflected at the interface and continues in the model body.

Task 2

PHYWE

Using your observations and measurements, describe how narrow beams of light behave when they strike a glass/air interface when the angle of incidence is $\alpha = 42^{\circ}$.

The incident light beam is split at the interface between glass and air. Part of the light travels exactly along the interface (refraction angle β = 90°). The other part is reflected at the interface and continues in the model body.

The incident light beam completely penetrates the glass-to-air interface and is refracted away from the perpendicular.

The incident light beam is split at the interface between glass and air. Part of the light passes through the interface and is refracted away from the perpendicular. The other part is reflected at the interface and continues in the model body.

Task 3

PHYWE

Using your observations and measurements, describe how narrow beams of light behave when they strike a glass/air interface when the angle of incidence is $\alpha > 42^{\circ}$.

The incident light beam is split at the interface between glass and air. Part of the light travels exactly along the interface (refraction angle β = 90°). The other part is reflected at the interface and continues in the model body.

The incident light beam is split at the interface between glass and air. Part of the light passes through the interface and is refracted away from the perpendicular. The other part is reflected at the interface and continues in the model body.

The incident light beam is completely reflected at the interface between glass and air and continues in the model body. No more refraction occurs.

Task 4 PHY	VE
 The phenomenon you observed is called total internal reflection. Under what conditions does it occur? Judge whether the following statement is true or false. Total internal reflection occurs when light from an optically thinner material (air) is incident on the interface with an optically denser material (glass) and the angle of incidence is less than a certain angle (critical angle). O True O False 	

Task 5

PHYWE

Why does an asphalt road seem to be wet in the distance on warm summer days when looking at the road from a car? Fill in the blank.

The air in the immedia	ate vicinity of the asphalt road is s	strongly	heated
and is thus	than the	layer of air above it.	total reflection
With a very	incidence of light, th	incidence of light, the condition for	
is thus fulfilled. The sunlight is reflected at the		optically thinner	
and reaches the eye of the observer, who thus gains the			boundary laver
impression of having a reflecting water surface in front of him in the distance.		colder	
			colder

Task 6	PHYWE
What are applications of total internal reflection?	
Headlights	
Fibre optic cable	
Light guide cable	
Mirage	
Prism binoculars	
Check	

Additional task

PHYWE

With the help of the law of refraction and the reversibility of the light path, try to give a reason for the occurrence of total internal reflection. Fill in the blanks.

If the light hits the	ā	air to glass, the		border angle
cannot take on larger	r values than 90°.			air
This also means that		larger than 90° ca	nnot occur if the light	refraction angles
path runs in the oppo	osite direction. The		from which a total	interface
reflection of the light occurs is therefore the one at which the refracted light beam just				
touches the interface	between glass and			ungle of incluence

PHYWE

P1064800

Slide	Score/Total
Slide 19: Behaviour at angles of incidence <42°.	0/1
Slide 20: Behaviour at an angle of incidence of 42	0/1
Slide 21: Behaviour at an angle of incidence >42	0/1
Slide 22: Conditions for total internal reflection	0/1
Slide 23: Causes for an "apparently" wet road	0/6
Slide 24: Applications of total internal reflection	0/4
Slide 25: Cause of total internal reflection	0/5
	Total 0/19
Solutions	