

A model of an electroscope

Physics	Electricity & Magnetism	Electrostatics & electric field	
Difficulty level	QQ Group size	Preparation time	Execution time
easy	-	10 minutes	10 minutes

This content can also be found online at:

http://localhost:1337/c/6425e384f60c9e000299f61f

PHYWE

Teacher information

Application PHYWE

Source: https://de.wikipedia.org/wiki/Elektrische_Char

As is known from previous experiments, opposing states take on different properties when they are electrically charged. A basic distinction is made between positive and negative charge.

This electrical charge can be detected with the help of an electroscope.

The functioning of the electroscope is based on the forces of repulsion acting between like-charged bodies, as can also occur in the electrostatic charge caused by friction in a slide or on a trampoline.

Other teacher information (1/2)

PHYWE

Prior knowledge

The students should ideally have already completed experiments on "Detection of charge types on foils and plates" and "Forces between charged bodies", as these provide a good basis of basic knowledge for carrying out this experiment.

Principle

With the help of the electroscope, electrical charges can be determined and additionally a statement can be made as to whether a body is negatively or positively charged.

Other teacher information (2/2)

PHYWE

Learning objective

Tasks

detect electrical charges with it.

The students learn how an electroscope works on a simple model and are able to

In this experiment, the students are to:

- 1. Build a model of an electroscope.
- 2. Examine electrically charged plastic rods with the generated electroscope.

Safety instructions

PHYWE

The general instructions for safe experimentation in science lessons apply to this experiment.

Notes on set-up and procedure:

If necessary, the acrylic rod must be charged and stripped several times during the third measurement in order to be able to observe the desired effect of recharging the electroscope.

Student information

Motivation PHYWE

Source: https://de.wikipedia.org/wiki/Elektrische_Char

The phenomenon of electric charge is familiar to you from everyday phenomena, for example when your hair sticks out when you slide or jump on a trampoline. You have probably also rubbed a balloon against your hair until the hair sticks out or the balloon sticks to the ceiling.

Particularly in the case of the protruding hairs, you can observe not only the effect of the static charge, but also the repulsion of charges of the same name, since the hairs are distributed over as large a volume as possible. The electroscope, with which you will deal in this experiment, is based on the same principle.

Tasks PHYWE

In this experiment you will investigate how to determine the electrical charge of different objects.

For this purpose you will work on the following task:

- 1. Build a model of an electroscope.
- 2. Examine electrically charged plastic rods with the generated electroscope.

Equipment

Position	Material	Item No.	Quantity
1	Polypropylene rod, I=175mm, d=10 mm	13027-09	1
2	Acrylic resin rod, I=175 mm, d=8 mm	13027-08	1
3	Support rod, stainless steel, d = 8 mm, I = 175 mm	02038-00	1
4	Rubber stopper,d=49/41mm, 1 hole	39263-01	1
5	CONDUCTING FOIL 2 CUTS 3X60MM	326870	1

Additional Equipment

PHYWE

Position Equipment Quantity

- 1 Dry, rough paper DIN A4
- 1 Adhesive tape

Set-up (1/2)

- Insert the stand rod into the rubber plug with the side of the plug with the larger diameter facing up.
- Now take the guide foil strip and attach a piece of adhesive film to its upper end.

Adhesive film on the guide foil strip

Set-up (2/2) **PHYWE**

Attach the guide foil strip to the stand rod

Then attach the guide film strip to the top of the stand rod using the adhesive film.

Procedure (1/3)

PHYWE


1st experiment: Charge the polypropylene rod electrically by rubbing it vigorously with paper.

Streak along the tripod rod with the rod almost full length and observe the guiding film strip.

Touch the tripod rod with your hand while continuing to watch the guiding film strip.

Rub polypropylene rod and paper together

Stripping the rod from the stand rod

Touching the stand rod with the hand

Procedure (2/3)

PHYWE

2nd try:

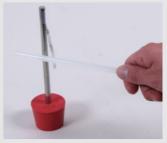
• Repeat the process in the same way but using the acrylic stick.

Rub acrylic stick and paper together

Strip the rod past the stand rod

Touching the stand rod with the hand

Procedure (3/3)


PHYWE

Third try:

- Now rub first the polypropylene and then the acrylic rod with the paper to charge them.
- Then swipe the two loaded rods one immediately after the other on the stand rod.
- In both cases, again observe the guiding strip both as it approaches and as it comes off.

Report

Task 1 PHYWE

What were your observations during the 1st experiment (polypropylene rod)?

- ☐ The guiding foil strip approaches the stand rod when the rod is rubbed.
- $\hfill \square$ The guiding foil strip spreads away from the stand rod when the rod is rubbed.
- $\hfill \square$ When touched with the hand, it returns to its original position.

Task 2	WE
What were your observations during the 2nd experiment (acrylic rod)?	
☐ When touched with the hand, it returns to its original position.	
☐ The guiding foil strip spreads away from the stand rod when the rod is rubbed.	
☐ Nothing worth mentioning has happened.	
☐ The guiding foil strip approaches the stand rod when the rod is rubbed.	
⊘ Check	

Task 3	PHYWE
What were your observations during the 3rd trial?	
☐ When approaching the acrylic rod, the deflection of the guiding foil strip decreases.	
☐ When approaching the acrylic rod, the deflection of the guiding foil strip goes unchanged.	
☐ When you strip the acrylic rod, the rash increases again.	
☐ When you strip the acrylic rod, the overall rash decreases.	
○ Check	

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Task 4				PHYWE	
What do you see from measurements 1 and 2 about the way the model electroscope works? Drag the words into the correct boxes to justify your observations!					
If you wipe an	body on the stand	body on the stand rod, the rod and the			
conductive foil strip are charged		. Since the stand rod and the		conductively	
strip are	connected to each othe	r,		electrically charged	
occurs. This happens whether the	occurs. This happens whether the body is negatively or positively charged.			repulsion	
Not needed:	(adjective),		(noun).	similarly	
				insulating	
⊘ Check					

Task 5 PHYWE

How can we explain the movement of the guiding foil strip in the individual sections of the last measurement?

- O No general statements can be made regarding the movement of the guiding foil strip.
- O If the charged electroscope is approached by a body that carries opposite charges, the pointer deflection initially decreases due to induction and, when touched, due to charge equalisation. If these opposite charges are added again, the electroscope is charged with them and the pointer deflection increases again.

Slide				Sc	ore/Total
Slide 17: Observation: Experiment 1					0/2
Slide 18: Observation: Experiment 2					0/2
Slide 19: Observation: Experiment 3					0/2
Slide 20: Mode of action of the electroscope					0/6
Slide 21: Explanation experiment 3					0/1
			Total	*	0/13
	Solutions	2 Repeat			

