

At what wavelength does an LED light up?

Physics	Modern Physics	Modern Physics Solid state physics	
Difficulty level	R Group size	Preparation time	Execution time
easy	1	10 minutes	10 minutes

This content can also be found online at:

http://localhost:1337/c/615c3b5dbd5b06000320c685

PHYWE

Teacher information

Application PHYWE

Test setup

The wavelength of light influences the results of many experiments. Thus, by knowing the wavelength of emitted light, much can be said about the nature of different materials.

Determining the wavelength of light is a good way to check the understanding of diffraction at the grating, as this is necessary to determine the wavelength.

Other teacher information (1/2)

PHYWE

Previous

Students should be familiar with diffraction at the grating.

Principle

Light rays hit the grating and are diffracted there with different degrees of rigidity according to their wavelength. Thus, the position of the first secondary maximum with a known grating constant depends only on the distance of the grating from the screen and the wavelength of the light used.

Other teacher information (2/2)

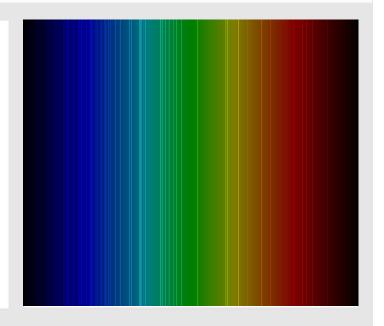
PHYWE

Learning

The aim of this experiment is to consolidate the students' understanding of diffraction at the grating.

Tasks

 Measurement of the first secondary maximum and determination of the wavelength of the light used.



Student Information

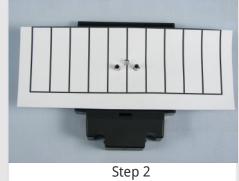
Motivation PHYWE

The determination of the wavelength of light is a vast field, which is especially applied in astronomy and materials research.

Whether it is used in spectroscopy to find out what the atmosphere of a distant planet is made of, or to find out how fast a car fell into a speed trap, the determination of the wavelength of the emitted light accompanies many areas of life.

Equipment

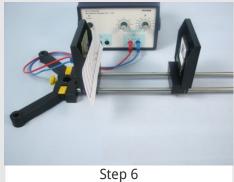
Position	Material	Item No.	Quantity
1	LED - blue, with series resistor and 4 mm plugs	09852-40	1
2	LED - green, with series resistor and 4 mm plugs	09852-30	1
3	LED - red, with series resistor and 4 mm plugs	09852-20	1
4	LED - UV, with series resistor and 4 mm plugs	09852-50	1
5	Grating, 500 lines/mm, in slide frame, glassless	09851-16	1
6	Support base, variable	02001-00	1
7	Support rod, stainless steel, I = 600 mm, d = 10 mm	02037-00	2
8	Slide mount without angle scale	09851-02	2
9	Diaphragm holder, attachable	11604-09	2
10	Measuring tape, I = 2 m	09936-00	1
11	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1
12	Connecting cord, 32 A, 750 mm, red	07362-01	1
13	Connecting cord, 32 A, 750 mm, blue	07362-04	1



Structure (1/2)

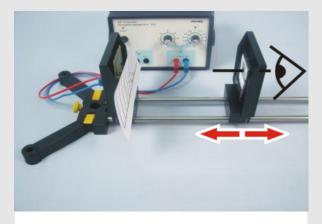
PHYWE

- Note: To perform this experiment, it is advantageous if the room is only slightly darkened and the measurements are not performed directly against daylight.
- Set up the experiment according to steps 1 to 6 in the order LED, measuring scale, grid on the stand material.


Structure (2/2)

PHYWE

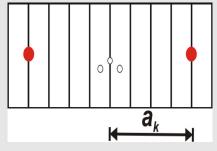
 $\circ\,$ The prepared measuring scale is plugged onto the diode so that the head of the LED just sticks out. Pay attention to the correct polarity when connecting the LED!

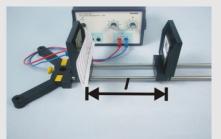


Procedure (1/2)

PHYWE

- Select the LEDs with the colors UV, blue, red and green one after the other.
- After connecting an LED, set a voltage of 6 V so that the LED lights up clearly.
- The eye is used to get very close to the grid from behind.
- Move the grid forward/backward until the first maximum is on the middle of a thick line.




The accuracy is increased by setting a distance of 8 or 10 cm for the first maximum.

Procedure (2/2)

PHYWE

- Note the distance of the first maximum to the center as *ak* in Table 1 in the Protocol.
- Measure the distance from the grid to the tip of the LED and note it as distance / in Table 1.
- Repeat the experiment for the other diodes.

PHYWE

Report

Task 1		PHYWE
	a_k in cml in cm λ in nm	
LED color	a_k in thin in thi λ in thin	
red		
green		
blue		
UV		

Task 2 PHYWE

What equations are needed to determine the lattice constant?

- $\square \ an(a_k) = a_k N$
- $\square \cos(a_k) = k \cdot \lambda/g$
- Check

Task 3 PHYWE

What formula does this give for the lattice constant?

$$g = k \cdot \sin(a_k N)$$

 $g = k \cdot (\lambda / \cos(\arctan(a_k N)))$

 $g = k \cdot (\lambda / \sin(\arctan(a_k N)))$

	constant		0/2
lide 15: Equation 2			0/1
		Total score	0/3

