

Half-life and radioactive equilibrium

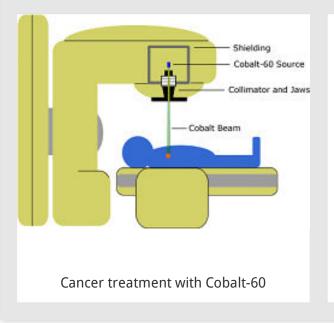
Physics	Modern Physics	Nuclear & particle physics	
Difficulty level	QQ Group size	Preparation time	Execution time
hard	2	45+ minutes	45+ minutes

This content can also be found online at:

http://localhost:1337/c/5f414d1b65140d000365ec59

Tel.: 0551 604 - 0

Fax: 0551 604 - 107



PHYWE

General information

Application PHYWE

Half-life is the time it takes for one-half of the atoms of a radioactive material to disintegrate. Certain radioactive materials are used in:

- o Cancer treatment: Cobalt-60, Radium-226
- o Biochemical tracer: Hydrogen-3
- Smoke detector: Americium-241

Other information (1/2)

PHYWE

Prior knowledge

Scientific principle

Radioactive decay is the spontaneous breakdown of an unstable atomic nucleus resulting in the release of energy and matter from the nucleus. Three of the most common types of decay are alpha decay, beta decay, and gamma decay, all of which involve emitting one or more particles or photons.

The half-life of a ^{137m}Ba daughter substance eluted (washed) out of a ^{137m}Cs isotope generator is measured directly and is also determined from the increase in activity after elution.

Other information (2/2)

PHYWE

Learning objective

Tasks

- Understanding the properties behind the rate of radioactive decay in dependence upon time of reaction.
 - 1. Measure the activity of the isotope generator as a function of time immediately after elution.
- 2. Measure the activity of a freshly eluted solution of ^{137m}Ba as a function of time.

Safety instructions

PHYWE

For this experiment the general instructions for safe experimentation in science lessons apply.

For H- and P-phrases please consult the safety data sheet of the respective chemical.

Radioactive substances can be hazardous to your health! Always reduce the time spent handling radioactive substances to a minimum.

Do not eat or drink anything in the presence of radioactive substances.

Always wash your hands after contact with them!

Theory (1/8)

The isotope generator contains 400 kBq of ^{137}Cs , which serves as the parent substance; its half-life is 30.25 years. ^{137}Cs decays into the barium isotope ^{137}Ba with the emission of β -radiation. This transition occurs, in part, directly (approximately 5%) to the stable ground state of ^{137}Ba and, in part (approximately 95%) via the meta stable state of ^{137m}Ba .

 ^{137m}Ba decays with a half-life of only 2.6 min under emission of γ -radiation ($E_{\gamma}=662~keV$) in the stable ground state of ^{137}Ba .

The decay chain is thus

$$egin{array}{ccccc} \lambda_1 & \lambda_2 \ N_1 &
ightarrow & N_2 &
ightarrow & N_3 \end{array}$$

where

 $N_1\,$ = number of ^{137}Cs atoms

 N_2 = number of ^{137m}Ba atoms

 N_3 = number of ^{137}Ba atoms

 λ_1 = disintegration constant of ^{137}Cs

 λ_2 = disintegration constant of ^{137m}Ba .

Theory (2/8)

The rates of disintegration are:

$$rac{dN_1}{dt} = -\lambda_1 \, N_1$$

$$rac{dN_2}{dt} = \lambda_1 \: N_1 - \lambda_2 \: N_2$$

Solving the system of two differential equations gives for $N_2(t)\,$, with the initial condition that $N_2(t=0)=0\,$:

$$N_2(t)=N_1(0)rac{\lambda_1}{\lambda_2-\lambda_1}(e^{-\lambda_1\,t}-e^{-\lambda_2\,t})$$

Theory (3/8)

The activity of the daughter substance is thus

$$A_2(t) = \lambda_2 \, N_2 = A_1(0) \, rac{\lambda_2}{\lambda_2 - \lambda_1} (e^{-\lambda_1 \, t} - e^{-\lambda_2 \, t})$$

As the half-life of the parent substance $T_{1/2}(1)$ is much greater than that of the daughter substance $T_{1/2}(2)$ in this case, then $\lambda_1 \ll \lambda_2$. If we now neglect λ_1 in relation to λ_2 , we obtain

$$A_2(t)=A_1\left(1-e^{-\lambda_2\,t}
ight)$$

with A_1 constant.

Theory (4/8)

When t is very long,

$$A_2(t)-A_1(t)$$
 and $\lambda_2 N_2=\lambda_1 N_1$

i.e. the substances are in equilibrium (dynamic equilibrium, steady state).

If this equilibrium is disturbed by the removal of the daughter substance, the system will try to restore the equilibrium by forming more of it. For the increase in the daughter substance, we have:

$$A_2(t) = A_1(1 - e^{-\lambda_2 t})$$

with A_1 constant.

Theory (5/8)

If the equilibrium activity

$$A_2(t=\infty)=A_1$$

is measured prior to elution, then $\lambda_2\,$ can be calculated from the measured values A-A(t)

$$A_1 - A_2(t) = A_1(e^{-\lambda_2 t})$$

Theory (6/8)

The counting rate decreases to half of its original valu after a time period can be determined by

$$\dot{N}=\dot{N}_0\,e^{-\lambda t}$$

and

$$rac{1}{2}\,\dot{N}=\dot{N}_0\,e^{-\lambda au}$$
 .

Thus,

$$\lambda = rac{\ln \, 2}{ au}$$
 .

 \dot{N} : Actual rate of decay

 $\dot{N}_0~$: Counting rate at time

 λ : Decay constant

t: Time

au: Half-life

Theory (7/8)

By taking the logarithm of

$$\dot{N}=\dot{N}_0\,e^{-\lambda t}$$

the following is obtained

$$\ln \dot{N} = -\lambda t \ln \dot{N}_0$$

Comparing the coefficients with the regression line y=mtb shows that the slope of the regression line m corresponds to the negative decay constant:

$$m = -y$$

The decay constant λ is characteristic for the gradual decline in radioactivity: It is thus linked to the specific time period in which the substance quantity decays to half of its initial radioactivity (half-life τ).

Theory (8/8)

Formation of daughter substance subsequent to disturbance of the equilibrium by elution

Calculation of the half-life. At time *t* an activity is measured that can be calculated according to the following formula:

$$\dot{N}(t)=\dot{\overline{N}}+\dot{N}_0(1-e^{-\lambda t})$$
 .

 $\dot{N}(t)$: Actual counting rate

 $\frac{\cdot}{N}\:$: Activity of the β -radiating $^{137}Cs\:$ (through the opining in the source) and the residual activity of the $^{137m}Ba\:$, which results from incomplete elution.

 $\dot{N}_0\,$: Equilibrium activity of the daughter substance, ^{137m}Ba

Equipment

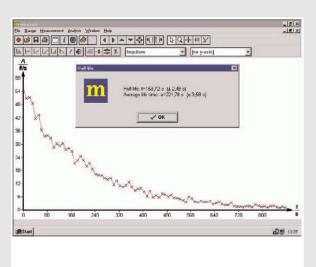
Position	Material	Item No.	Quantity
1	PHYWE Geiger-Müller Counter	13609-99	1
2	Geiger-Mueller counter tube, type B, BNC cable 50 cm	09005-00	1
3	Isotope generator Cs-137, 370 kBq	09047-60	1
4	Base plate for radioactivity	09200-00	1
5	Specimen tube with holder	09203-01	1
6	Plate holder on fixing magnet	09203-00	1
7	Source holder on fixing magnet	09202-00	1
8	Beaker, Borosilicate, low form, 250 ml	46054-00	2
9	Test tubes 100x12 mm,FIOLAX,100pc	36307-10	1
10	Rubber stopper,d=14.5/10.5mm, w/o	39253-00	1

Setup and procedure

Setup PHYWE

Set up the experiment as shown in the figure.

Procedure PHYWE

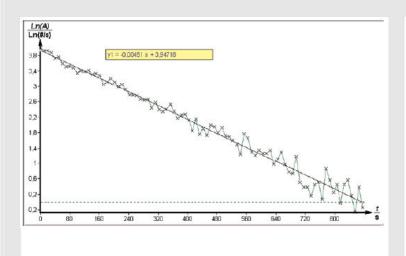

In accordance with the instructions the isotope generator is eluted into a glass beaker which should then be placed as far away from the counter tube as possible. Make a U-shaped cap from a strip of aluminium sheet and put it over the tube: it will absorb the electrons in the betadecay phase which would otherwise interfere with the experiment.

To measure the increase in activity it is advisable to read off the impulse rate every 30 seconds after elution (counting ratemeter time constant = 10 seconds). Activity and im-pulse count are sufficiently proportional at low impulse rates.

To measure the half-life of the ^{137m}Ba isotope, first elute the isotope generator in a test tube, then place it as far away from the rest of the equipment as possible. The counter tube (without the aluminium cap) can now be set up immediately in front of the bottom end of the test tube.

Evaluation (1/6)

PHYWE

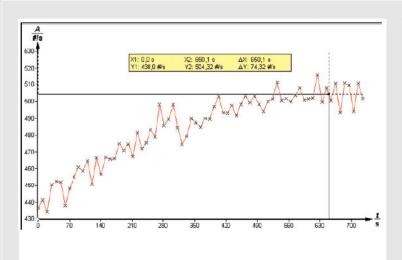

Calculation of the half-life of Ba-137m's decay, counting rate as a function of time

In the elution process, the ^{137m}Ba is washed out of the isotope generator. Figure shows the counting rate that decreases exponentially over time.

Evaluation (2/6)

PHYWE

Logarithmic plot of the counting rate of Ba-137m's decay with the regression line

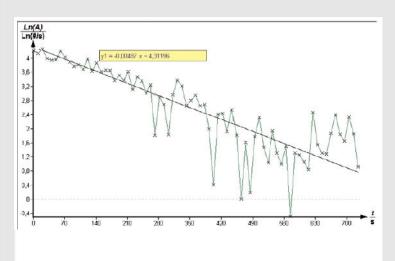

The logarithmic counting rate is plotted as a function of time, the straight line is obtained.

In this case, the counting rate decreases to half of its original value after a time period:

 $\tau = 153.69 s .$

Evaluation (3/6)

PHYWE



Plot of the counting rate of the $^{137m}Ba\,$ being formed as a function of time

By subtracting the equilibrium activity after approximately 650 s, which is comprised of \overline{N} and N_0 , from the respective actual counting rate, in this case 504.28 .

Evaluation (4/6)

PHYWE

Logarithmic counting rate of the $^{137m}Ba\,$ being formed as a function of time, with the regression line

and energy.

By calculating the natural logarithm of this variable's value, the Figure is obtained.

The half-life for this measurement, $au=142.33\,\mathrm{s}$ follows from the slope of the drawn regression line

$$au = -rac{\ln\,2}{m} = -rac{\ln\,2}{-0.00487} = 142.33\,s$$

Evaluation (5/6)

PHYWE

Fill in the blanks:

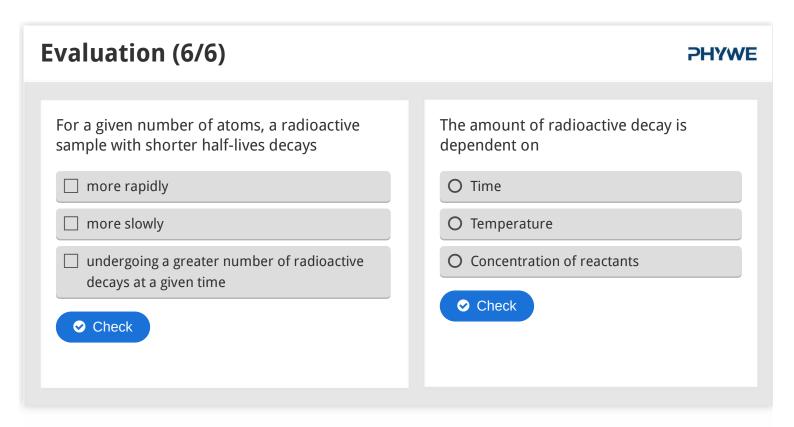
Half-time of a nuclear decay process is the interval of required for

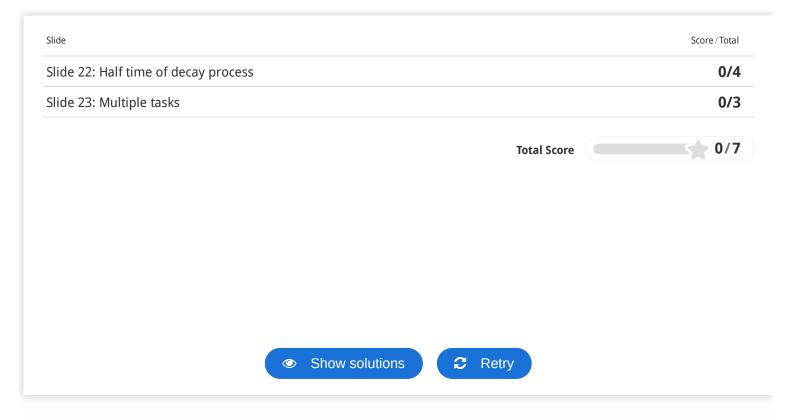
of the unstable of a radioactive sample to decay.

The radioactive substance changes spontaneously into other nuclear species by emitting

for atomic nuclei

particles


time


one-half

