



SOLAR-WIND-FUEL CELLS ENERGY TRAINER

DL GREENKIT

This trainer has been designed for the study of renewable energies sources: solar energy, wind energy and hydrogen fuel cell systems.

Complete with connecting cables, experiment manual, connection to PC through the RS485 serial port and software for data acquisition and display.

TRAINING OBJECTIVES

Study of a solar system

- Voltage and current in a solar panel as a function of light intensity
 - Measuring V_{oc} and I_{sc} characteristics of a solar panel
 - o Influence of temperature on solar panels
 - Connecting solar panels in parallel
 - Connecting solar panels in series.
 - Influence of tilt angle on solar panels
 - o Effect of shade on solar panels
- Current-Voltage characteristic, power curve and efficiency of a solar panel.
 - Study of solar panel under load. (Tracing the VI and power curve to determine MPP).
 - Solar panel efficiency

Study of a wind system

- The wind energy experiment-study of influence of wind speed and direction
 - Studying and understanding the power from the wind

COMPONENTS INCLUDED

- Reversible PEM fuel cells
- PEM Electrolyser
- Reversible hydrogen fuel cell to assemble
- Hydrogen and oxygen tanks
- Syringe
- Motor and fan with propeller blade
- 1 Watt solar panel
- 0.75 Watt solar cell
- Mini wind turbine (wind power generator)
 - Blade pitch, blade profile and number of blades can be evaluated
 - Vane aligns the turbine automatically to the direction of the wind
 - Special 3 phase alternator for higher output power
- Vehicle chassis with LED light & motor
- Battery pack with connecting leads
- Three DC instruments: range 10 V, 2 A.
- Decade Resistor
- Double spotlight with 2 halogen lamps.

- Influence of wind speed on generated power.
- Influence of wind direction on generated power.
- The study of influence of the wind turbine characteristics on generated power.
 - o Influence of the number of rotor blades.
 - o Influence of the pitch.
 - o Influence of the blades shape.
- The study of current-voltage characteristic of the wind generator; the influence of the load over rotor movement
 - Trace the current-voltage characteristic curve of a wind generator
 - Finding the MPP for different wind speeds (Tuning for max. power)
 - Study the "stability" of the wind turbine when it is influenced by the load (braking mode)

Study of a fuel cell system

- Understanding Fuel Cell General Installation
- Understanding Fuel Cell Structure (Assembling a fuel cell)
- Electrolyser: Producing Hydrogen as an electrical energy storage method
 - Determining the Minimum Voltage for Water Decomposition
 - Determining the flow of gas generated by the electrolyser
 - Determining the characteristic V-I curve of PEM electrolyser.
 - Energy efficiency and faraday efficiency of PEM electrolyser.
- Fuel cell: Producing electrical energy from stored Hydrogen.
 - Determining the V-I characteristic and power curve of a PEM fuel cell.
 - Energy efficiency and faraday efficiency of PEM fuel cell.

Study of a hybrid (Autarkic) system

- Implementing hybrid wind solar power system with hydrogen storage.
- Implementing hybrid fuel cell solar power system: studying the autonomy of a hydrogen powered car.

GENERAL FEATURES

Average training hours: 8h.

Approx. packing dimensions: 0.81x0.61x0.61 m.

Net weight: 29 kg.

Note:

DL GREENKIT requires table fan. It is not included in the kit.