



HYBRID SOLAR / WIND ENERGY TRAINER

DL SUNWIND-24V3

The main target of a hybrid power system is to combine multiple sources to deliver non-intermittent electric power, trying to take advantage of multiple available renewable energies.

Complete with connecting cables, experiment manual and software for data acquisition and processing.

TRAINING OBJECTIVES

Solar energy:

- Measurement of solar irradiance and irradiation
- Graph tracing of the following characteristics of a photovoltaic module:
 - voltage at no-load, function of irradiance
 - short circuit current, function of irradiance
 - current voltage, function of irradiance
 - voltage and current in overload condition
 - series and parallel connected configurations
- Regulating and charge of the battery
- DC solar plant
- AC installation.

Wind energy:

- Activating the braking action
- Regulating and charging the battery
- DC wind installation
- AC installation: standby function investigation.

Hybrid system:

• AC parallel connected, DC low voltage battery bank feed by different sources.

GENERAL FEATURES

The Trainer is composed of two subsystems for the conversion to electric energy, one from solar energy through a photovoltaic panel and the other from wind energy through a wind turbine.

In this trainer, two inverters work parallel connected; one acting as master, synchronizes the frequency of the second inverter, acting as slave; this architecture allows creating a connection between the two outputs that operate as a single line with double available power. This configuration can be expanded up to 9 inverters connected.

Average training hours: 12h.

The trainer is composed of:

- Two solar photovoltaic panels (85W, 12V) mounted on a support with wheels and complete with graduated scales for adjustment of the inclination and calibrated cell in the upper part for measuring the solar irradiance and temperature.
- Motor/generator group for the simulation of a wind turbine. Composed of a brushless motor coupled to **24V** AC 3ph generator, motor controller module, anemometer for real wind detection
- Wind turbine electronic regulator for battery charging.
- Two 2400W DC/AC converter modules (2400 W each), with sinusoidal output to generate an electrical network (mains). With a circuit breaker to switch on and off the inverter. It operates as master or slave. Complete with control panel. Integrated MPPT solar charge controller, two 12V batteries.
- Two 24Vdc load modules with two 20W halogen lamps each, with an On/Off control switch.
- Two 24Vdc load modules with two 3W LED lamps each, with an On/Off control switch.
- Two mains voltage load modules with a 35W halogen lamp and a 3W LED lamp each, with an On/Off control independent switch.
- Three-phase bridge rectifier module.
- Two residual circuit breaker modules, 10A, I_{Δn} 30mA.
- Variable logarithmic rheostat module, 80Ω , 6A max., to load the photovoltaic panel to detect the voltage-current characteristic curves.
- Instruments module for measuring solar parameters. It displays voltage-current-power, solar irradiance, temperature of the solar panel.
- Instruments module for measuring wind parameters. It displays voltage-current-power, Wind and Rotor data.
- Two sun simulators for solar photovoltaic panel internal use. The intensity of the light can be controlled by the operator locally through a potentiometer and remotely through a DC 0 ÷ 10 V signal or ModBus command.
- Three-level frame for the modules.